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The behaviour of a fluid system governed by a quadratic equation of state for the 
temperature is studied. The model consists of two well-mixed and interconnected 
vessels subjected to external thermal forcing. If inertial effects are neglected the 
temperature response of the fluid is governed by two autonomous ordinary differential 
equations in time. An investigation of these equations revealed that, depending upon 
the choice of parameters, the system has two possible final states: one stationary, 
the other a relaxation oscillation. The transitions between these stsates occur as sub- 
and supercritically unstable Hopf bifurcations. For certain parameter ranges, a 
stationary solution can thus coexist with a relaxation oscillation, thc initial conditions 
determining which of these is realized. 

1. Introduction 
It has become evident that one fruitful approach to a greater understanding of the 

physics of complex nonlinear fluid-dynamical systems lies in a simplification of the 
system under consideration to the point of containing the nonlinear mechanisms only 
in their most basic forms. Moreover it is often possible, using a Galerkin representation, 
to  simplify the governing equations to a small set of ordinary differential equations 
in time while hoping that the gross qualitative properties of the complete solution 
will not be lost. This approach has been successfully used by, for example, Lorenz 
(1960), Vickroy & Dutton (1979) and Pedlosky & Frenzen (1980) for dealing with 
models of atmospheric flow. The same technique has been utilized in deriving the 
Lorenz ( 1963) model from the partial differential equations governing two-dimensional 
Rayleigh-BQnard convection. Note, however, that for certain classes of fluid- 
dynamical problems the spatial dependence of the solutions can be eliminated by 
formulating the problem in terms of well-mixed connected reservoirs, as demonstrated 
by Stommel(l961) and Stommel & Rooth (1968), and further extended by Welander 
in a series of papers (cf. Welander 1981). The success of the general approach in the 
examples quoted above is indisputable and the theory for dynamical systems as used 
has proved to be a very efficient tool for handling the nonlinearities. 

The aim of this paper is to  present some results pertaining to the behaviour of a 
simple thermodynamical system based on convection in two well-mixed and connected 
reservoirs. The choice of geometry was dictated by a wish to make the system 
experimentally realizable, and resulted in two vessels connected with pipes in their 
upper and lower parts and capable of exchanging heat but not matter with the 
surroundings. The environment with which the system interacts is not in equilibrium 
in that i t  is composed of two reservoirs of different temperatures, each coupled to 
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one of the vessels by Newtonian heat conduction. Keeping the maximum density 
properties of water in mind, the working fluid in addition to being viscous is assumed 
to obey a quadratic law of state with regard to the temperature. The fluid is kept 
in a well-mixed and thus thermally homogeneous state within each vessel by 
externally imposed stirring. Since we moreover neglect thermal diffusion through the 
pipes connecting the vessels, we have a closed system from which all spatial 
dependence has been eliminated. 

The governing equations which result from this model form a nonlinear autonomous 
system of two ordinary differential equations in time for the temperatures within the 
vessels. This system, which can be regarded as being forced by the non-equilibrium 
environment, is capable of utilizing the resulting energy flux to organize various 
modes of circulation. Each of these can under non-equilibrium conditions only be 
maintained by an adequate flow of energy through the system. A mathematical 
analysis of the problem has been undertaken, and $2 will deal with analytical results 
concerning the qualitative behaviour of the degenerate case when the system is 
thermally insulated from the environment. I n  $ 3  the complete problem is formulated 
and some results on the existence and stability of the critical points are derived. 
Moreover, a general result concerning the stability of solutions far from equilibrium 
is established and the qualitative behaviour of these solutions as they approach the 
region to which they are thermodynamically constrained as time grows beyond limits 
is discussed. In  $ 4  the qualitative behaviour of the complete system within this region 
is examined, and it will be shown that the system can exhibit either transient 
behaviour in adjusting to  a stationary state or self-sustained oscillations. The 
bifurcations between these two states are also examined in some detail. I n  $5 a general 
discussion of the results attained is undertaken and some of the prospects for future 
work in the field are outlined. 

2. Investigations of a simplified system 
The main subject of this paper is the forced dissipative system briefly described 

above, but in order to facilitate the forthcoming investigation we first consider the 
degenerate case of the system kept thermally insulated from its environment. 

The physical model, illustrated in figure 1 ,  is based upon two vessels of equal height 
H and of volumes T< and 6.  These contain a non-Boussinesq fluid of temperatures 
T: and T,* respectively, the fluid within each vessel assumed to be well mixed as 
illustrated in the figure by the propellers. The energy input due to this mixing, which 
raises the potential energy level of the system, is, however, neglected in the analysis. 
The working fluid is assumed to  obey the following equation of state for the density 
P :  

p = p0{l-a’(T*-T,*)2}, (2.1) 

where a’ is the coefficient of thermal expansion and po is the reference density 
associated with the temperature 1’:. (In what follows T: for analytical simplicity is 
taken to be zero.) The entire system is subject to a gravitational acceleration g, and 
the vessels are coupled to one another a t  their upper and lower boundaries by two 
circular tubes of radius r and length +l. A density difference proportional to T,*2 - TZ2 
will drive a flow through the lower tube, whereas the upper tube acts like a passive 
conduit with the sole purpose of ensuring continuity inasmuch as the system is closed. 
Since the adjustment time of this flow under normal circumstances (m2Z + min ( V,, V,)) 



A nonlinear convective system with oscillatory behaviour 239 

FIGURE 1. Schematic illustration of the physical model, which consists of two interconnected vessels 
of equal height, each containing a well-mixed fluid. The separating wall indicates the possibility 
of applying differential thermal forcing. 

is much shorter than that of the temperatures T: and T,*, we assume that the flow 
q obeys the law of Hagen-Poiseuille (Landau & Lifschitz 1963): 

nr4ga'E 
8v1 

q = -(TZ2-TF2), 

where v is the kinematic viscosity of the fluid. 
The system is taken to  be thermally insulated from its environment, and, since heat 

can only be advected between the vessels, continuity yields the following equations 
governing the thermal response of the fluid within each vessel : 

dT,* nr4ga'H TI'-=------ I T,*' - Tf21 (T,* - T;" ) , 8 v1 

dT,* nr4ga'H Kw--- - IT,*'- T:21 (T,* - T;). 8vl 

( 2 . 3 ~ )  

(2.3b) 

Here we note that the direction of the flow q is insignificant for the thermal response 
of the system. We now non-dimensionalize this set of equations according to 

t" = t7, TT,' = ?,,AT, (2.4) 

where 7 is the relaxation time of the system and A T  is the initial temperature 
difference T,* init - T: init. (Note that th i s  latter scaling breaks down for the case of 
isothermal initial conditions, but this is o f  no consequence since these initial states 
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lead to trivial solutions identical with the initial values.) The governing equations 
in non-dimensionalized form become 

(2 .5a)  

-- dT, - -Ra*lG-ql  (T,-q), (2.5 b)  

where Ra* = n ~ a ' r ~ g H ( A T ) ~ / S v l  V, is a dimensionless quantity, reminiscent of a 
Rayleigh number, reflecting the magnitude of the initially imposed forcing as 
compared with the damping inherent in the system. The ratio of the volumes of the 
vessels is S = VJV,. 0 < S <a. 

This two-dimensional autonomous system of ordinary differential equations in time 
constitutes together with the conditions q ( 0 )  = Tinit and T , ( O )  = an initial-value 
problem which has two critical points, (i.e. stationary solutions (T:, Ti) characterized 
by d(T:, Tz)/dt = O ) ,  both of which are located on the diagonals in (T,, T,)-space. 
Conservation of heat yields for 6 + 1 

dt 

and for S = 1 

(2 .6a)  

(2.66) 

(2 .7a)  

(2 .7b)  

Note that, in the case of equal volumes of the vessels (S = l ) ,  a prerequisite for the 
existence of a critical point located on the antisymmetrical diagonal is that the initial 
temperatures be of equal magnitude but opposite in sign. 

In  order to determine the stability of the critical points, the set of governing 
equations is perturbed with small a and /3 around the stationary solution in question : 

T,  = T:+a, T, = Ti+/?. (2 .8)  

For an isothermal critical point (5": = Tz) the equations governing the perturbations 
for all S turn out to be 

da Ra* 
-= - - ~ ( 2 T ~ ( / 3 - ~ ) + ( / ? 2 - ~ 2 ) (  (/?-a), (2 .9a)  
dt S 

!@ = -Ra*pT;(/3-a)+ (p- a')[ (/?-a). (2 .9b)  
dt 

By neglecting cubic terms in a and /?, these equations can be reformulated as: 

(2.10) 3 d 
- (/?-a) = -sgn (Tz(/?-a)) 2Ra*Ti 1 +- (/?-a)2, 
dt 

which in turn is recognized as a degeneratc version of the Riccati equation (cf. Ince 
1926) with the following general solution: 

s g n ( T ~ ( P ( O ) - n ( O ) ) 2 B a * T i  (2.11)  

where C, is an arbitrary constant. Note that the initial values of a and /? determine 
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the sign of the difference between the perturbations a t  all later times, since in order 
to change sign the solution must pass through a critical point on the diagonal Tl = T,. 
The explicit solution yields that the limiting value of /?-a is equal to zero, i.e. for 
increasing time the system approaches a new stationary solution situated on the 
isothermal diagonal in (TI,  %)-space. (Only for an exceptional choice of initial 
perturbations a(0) V1+P(O) V, = 0 can we expect the system to regain its original 
critical point (TY, T;).) 

A perturbation analysis for the critical points constituting the antisymmetrical 
diagonal = - T,  yields the following system of linearized equations: 

= -sgn (T;(a+/3))B~*4T:~(a+/3). 
dt 

The solution for the sum of the perturbations is found to be 

(2 .12a)  

(2.12b) 

(2.13) 

where C, is an arbitrary constant and sgn(T;(a+P)) as in the previous case is 
determined by its initial value. Thus for 6 + 1 the stationary solution = -Tg is 
stable for small perturbations (a, P )  such that (l/S- 1) sgn (E(a(0)  + P ( O ) ) )  is negative, 
whereas a positive value of this quantity yields an unstable critical point. From a 
physical viewpoint this is not surprising, since in general a temperature perturbation 
of the system in the steady state TY = - T; can be expected to give rise to  a flow which 
tends to reinforce the temperature imbalance, thus bringing about an instability. 
However, when the vessels are not of equal volume (S =l l ) ,  the thermal response to 
the flow induced by the initial temperature perturbation differs between the two 
containers. Thus when 6 < 1 for small initial perturbations a(O), P(0) such that 
a ( O ) + P ( O )  < 0 if Ti > 0 or a(O)+P(O)  > 0 if T; < 0, there arises the possibility that 
the resulting flow counteracts the perturbations, thereby leading to a stable steady 
state. Analogous conditions prevail when 6 > 1. This mechanism, arising from the 
lack of inertia in the system, is, however, dependent upon the asymmetry of the 
volumes 6 and consequently is not applicable for S = 1. In  the case of equal volumes 
of the vessels, the full nonlinear perturbation problem (a(0) + P ( O )  + 0) for the critical 
point on the antisymmetrical diagonal proves to have an exact solution 

a ( t )  = T;+?j(a(O) +/3(0))-{2(2T;-a(O) + P ( O ) ) - '  

+sgn ( (a(O)+P(O))  (2T;-a(0)+P(0)))4(a(0)+P(O))Ra*t}-1, (2.14a)  

P(t )  = 40) + P ( O )  -a ( t ) .  (2.14b) 

Since this result is valid irrespective of the initial magnitudes of the perturbations, 
i t  in fact represents a global solution to (2.5a, 6 )  for ppt + - PZnit. I n  the limit t-r  00,  

(2.14a, b)  yield a stable solution on the symmetrical diagonal consistent with heat 
conservation. Thus for 6 = 1 a critical point TF = - T; is unstable for all perturbations 
a(0) + P ( O )  + 0, a result compatible with (2.7 b) .  

To summarize i t  might be stated that this analysis of a thermally insulated version 
of the general problem has shown the importance of the two diagonals Tl = f and 
has furthermore demonstrated the difference in behaviour of the system in the 
vicinity of each of them. There is perhaps reason to expect that some of these 
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characteristics will be carried over to the complete forced and dissipative system, but 
since we are studying nonlinear processes the general case may in addition exhibit 
some unexpected properties. 

3. The forced dissipative system; some general viewpoints 
The complete forced and dissipative system is obtained by introducing a Newtonian 

heat flux through the walls of the vessels caused by the prescribed external 
temperatures TYx and T:x. The governing equations take the following form : 

( 3 . 1 ~ )  

( 3 . l b )  

Here K ~ ,  i = 1 , 2  is a constant of proportionality defined by the following surface 
integral over the vessel boundary Ai : 

dA (i = 1 , 2 ) ,  
Ki = II,,,, 

where I?$ is the thermal conductivity of the container wall of thickness dt ,  and C is 
the specific-heat coefficient of the fluid. In  order to make the problem analytically 
tractable we shall in the present paper limit ourselves t.0 the case of K1 = K$ = K ,  which 
in practice is easily realizable since we can prescribe the shapes and thermal 
characteristics of the vessels. By now redefining A T  = Ex- c", the previously 
introduced scaling of the variables results in the following set of non-dimensionalized 
governing equations : 

dTl Ra 
dt 6 

dt 

( 3 . 3 a )  

(3 .3b )  

Here Ra = n ~ a ' g H r ~ ( A T ) ~ / 8 v l  V, is the Rayleigh number, Pe = V J ~ K  the PBclet 
number, S = V,/V, the volume ratio and 8 = qx/Qx the ratio of the prescribed 
external temperatures. Note that 8 = + 1 gives rise to a singularity in the governing 
equations due to a breakdown of the scaling. This case, however, lacks physical 
interest, corresponding as it does to a homothermal steady state, and consequently 
will be neglected. Given initial conditions, the four parameters Ra, Pe ,  6' and S are 
sufficient to characterize the evolution in time of the entire system. The slightly 
heterodox definitions of the Rayleigh and PBclet numbers are due to  the absence of 
internal diffusion in the system, whereby the diffusion parameter occurring in these 
nondimensional numbers must be the one controlling the heat flux through the vessel 
boundaries. 

3.1. The critical points 
In determining the critical points we first examine the conditions when the expression 
inside the modulus sign of (3 .3a ,  b )  is positive, c2-q2 > 0. In  this case, after 
elimination of = - c + (1 + 8 ) / (  1 - O), the equation for Tg becomes 
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which for O2 + 1 has the following roots: 

1 1 + 0  1 '-"+(( 1 1 --)". 1 (3 .5)  
p2 - 

- 2 1 - 0 8Ra Pe 1 + 0- 8Ra Pe i 5 Ag)z +4Ra Pe(1 + 0 )  8Ra Pe 

Since c2 - T:2 a priori is taken to be positive, it can be shown that only the positive 
root is retained. Furthermore it can be demonstrated that the condition c2 - c2 > 0 
can be rephrased as 82 < 1 ,  i.e. TFx2 < cx2. Thus we obtain the following result for 
the critical point of our autonomous system of ordinary differential equations when 
tI2 < 1 :  

+ ___ 1-B ( 1 - ( 1 + 8Ra Pe - p--- 

( 1  - ( 1  + 8Ra Pe - 

1-0  

- 21-0 8RaPe1+6 1-0 

11+0 1 
' - 2 1 - 0  8 R a P e l + 0  

- i i + e  
p2 - - - - ~ -  

( 3 . 6 ~ )  

(3.6b) 

When c2-c2 < 0, the equation for Tg turns out to be 

In the same manner as above i t  may now be shown that the condition c2 - T:2 < 0 
is equivalent to .02 > 1 ,  i.e. T;x2 > zx2. Finally we arrive a t  the following result for 
the critical point of the system when O2 > 1 : 

i i + e  TC - _--___- 
' - 2 1 - 0  8RaPe1+0 

T C  i i + e  
-'( ' - 2 1 - 0  8RaPe1+0 

1 -( 1 -8Ra Pe- 

( 3 . 8 ~ )  

(3.8b) 

The limiting case Tg2-C2 = 0, which in practice is equivalent to 0 = - 1 since we 
have decided to  neglect the trivial case of isothermal forcing 0 = + 1 ,  has the following 

T C  - - T C  - -1 (3 .9)  
critical point; 

1 -  2 -  2 '  

The critical point (c, Tg) does not depend upon the ratio of the volumes, since these 
only influence the rates of change of the temperature, which by definition are equal 
to zero for a stationary solution. 

The two general cases discussed above are defined by the ratio t9 of the imposed 
external temperatures cx and Ex. A way of recognizing their fundamental unity 
is to make the gedanken experiment of interchanging the two vessels and their thermal 
forcing ; in effect to make the transformation 

which in turn leads to l% = Pe 6 and l?a = Ra/S. If now O2 < 1 ,  then d2 > 1, and it  
is found from the explicit expressions above that and f i  = - C.  Since the 
transformation also affects the temperature scaling, A5! = -AT, this result is in 
accordance with what might have been expected from a physical standpoint. Keeping 
this in mind, it is recognized that if 6 is allowed to range over the positive part of 
the real axis no information is lost when we in what follows limit ourselves to studying 
the case of Q2 - c2 > 0, i.e. O2 < 1 .  

= - 
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3.2. Global properties of the solution 

I n  order to determine whether all solutions to the problem are bounded, define a 
positive definite Liapunov function (cf. Lasalle & Lefschetz 1961) V such that 

V = 6Tf + Tt. (3.10) 

The derivative d Vldt with respect to our autonomous system of governing differential 
equations (3.3 a,  b )  becomes 

d V  
- = 4 R a { - l z - c l  (Tt+Tf)+(Ti-qJI (T,q+T,e)} 
dt 

Using Cauchy's inequality it is found that the first term on the right-hand side of 
(3.11) fulfils -4RaIT2,- {Tf + Ti- T,T,(q + c)> < 0. 

The second term can be written as 

which is negative-definite outside the ellipse 

K = 6T:+T:, (3.12) 

where K is sufficiently large. Thus dVldt < 0 for V > K ,  i.e. trajectories that  
represent solutions to the forced, dissipative system must ultimately become trapped 
in the region where 6Tf + Ti < K.  (3.13) 

Consequently all solutions to the set of governing equations are bounded. (From a 
physical viewpoint this should come as no surprise, since the external temperature 
forcing and dissipation constrain the solutions to a well-defined region irrespective 
of the initial state of the system.) An important consequence is that according to the 
theorem of Bendixson (Lefschetz 1962) we can expect the solution to the general 
problem to be periodic in character if the critical point is unstable. 

Since the solutions to  the general set of governing equations are globally stable, 
i t  is possible to glean some information about the system from studying the manner 
in which arbitrary trajectories approach the region of the origin to which the 
thermodynamical forcing ultimately constrains the solutions. This is accomplished 
by numerical integration in time of the governing equations. The algorithm chosen 
was a fourth-order Kutta-Merson scheme, which provides a measure of the numerical 
error in each iteration, thus making i t  possible to keep the relative error within 
predetermined bounds by varying the time step. 

The results from a series of numerical experiments intended to  show the behaviour 
of the system when far from the region of the origin are summarized in the phase 
plane of figure 2. Here each trajectory represents the evolution in time of the solution 
associated with a particular set of initial values, Since the initial behaviour of the 
system proved to  be almost insensitive to variations of the parameters, the set of 
(Ra ,  Pe, 8,s) singled out for an investigation yields as representative a phase portrait 
as any other choice of parameters. From the figure it is evident that, given 
anisothermal initial conditions, the transient adjustment of the system towards the 
region of the origin consists of two distinct phases, the first of which is a motion forced 
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I 

FIGURE 2. In order to illustrate the global behaviour of the system, trajectories of the solutions 
for varying initial values far from the origin are shown for Ra = 5 ,  Pe = 1, 0 = -z and 6 = 4. 

by the initially prescribed temperature difference towards a quasistagnant isothermal 
state. This adjustment is comparatively rapid, as can be gathered from observations 
of the dependence of TI and T, on time in the numerical experiments. Once the solution 
has reached an isothermal state, a slow motion towards the origin takes place, the 
pace of which is determined by the external forcing. Only near the origin itself do 
the trajectories turn away from the isothermal diagonal. To elucidate the behaviour 
of the solutions hereafter will, however, be the topic of $4. 

4. The forced dissipative system; a more detailed investigation 
In  order to determine the behaviour of the solution in the region close to the origin, 

a prerequisite is that the stability characteristics of the critical point be fully 
explored. In  the general case of 8, < 1, a linear stability analysis yields the following 
second-degree algebraic equation for the eigenvalues h determining the stability 
properties of the critical point (c, c) : 

1-8 + 
s- 1 

PeS 16RaPe 1+8 
h2 + h { ( e), ( 1  - ( 1  + 8Ra Pe ~ 

- * ( 1 - ( 1 + 8Ra Pe 
2 

The zeroth-degree term is positive definite for all non-singular values of the 
parameters, and consequently the stability of the critical point is determined by the 
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- log€ 
-6 -4 -2 0 2 4 6 

FIQURE 3. Curve separating the ‘upper’ domain of unstable critical points in 
( B ,  y)-space from the ‘lower’ stable region. 

sign of the first-degree coefficient. Furthermore, owing to the non-zero constant term 
of the equation, when the eigenvalues are real these are definite in sign even for 
varying values of the parameters. When the discriminant of the equation is smaller 
than zero, the eigenvalues are complex and their real parts can change sign. Thus 
the condition 

”-’(=)’( 1 -( 1 + 8Ra Pe- 1-0 s+i i+e 
16Ra Pe = 0, (4.2) 

separates the domain of unstable critical points in four-dimensional parameter space 
(Ra > 0, Pe > 0, O2 < 1,  S > 0) from the stable region. By introducing 

i+e 1-61-8 
1-8’ Y=m1+B’ e = 8Ra Pe- 

the hypersurface above reduces to 

€(l+(l+s)t) 
= ( l - ( l + e ) y  (4.3) 

This boundary in two-dimensional parameter space ( e  > 0, - co < y < + CO),  with 
a minimum of y = 8 for e = 8, is shown in figure 3, where the region above the curve 
is associated with an unstable critical point. A qualitative change of the solutions 
to (3.3a, b )  occurs for alterations of e and y such that the boundary is crossed. From 
the point of view of bifurcation theory it is of great importance to establish the manner 
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FIGURE 4. Eigenvalues determining the stability of the critical point versus the Rayleigh number 
for Pe = 1, 0 = -E and 6 = i. The full and dashed lines represent the real and imaginary parts 
respectively. 

in which the eigenvalues cross the imaginary axis as the parameter p selected for 
investigation is varied. If it can be shown that this occurs transversally, 

where p, is the critical value of the parameter, the necessary conditions for a Hopf 
bifurcation, i.e. the emergence of stable or unstable closed orbits of the solution, are 
fulfilled (cf. Iooss & Joseph 1980). When y is taken to  be the bifurcation parameter 
the conditions for transversality are satisfied for all E .  In  order to conform to 
established practice within the field of thermal convection, interest is, however, 
focused upon the parameter E ,  which is proportional to the Rayleigh number. It can 
be shown that the only parameter values satisfying (4.3), for which the derivative 
with respect to E of the real part of the eigenvalues vanishes, are E = y = 8. Since this 
point represents the minimum of the curve in figure 3, it is recognized that the 
non-transversality is not associated with a proper change of sign of the real part of 
the eigenvalues as the parameter E is varied, but rather represents the limiting case 
of the stable critical point becoming neutrally stable before reverting to stability as 
the bifurcation parameter is further increased. Thus for y > 8 both a regular and an 
inverse Hopf bifurcation occur as the parameter E is increased. The question of the 
stability of the resulting periodic orbits will, however, be dealt with in a more 
appropriate context. 

A prerequisite for a stagnant steady state c = - E  is that the thermal forcing 
be antisymmetrical, i.e. 6 = - 1. In  this case a linear stability analysis for small 
perturbations 01 and p around the resulting critical point c = - Q = -4 yields the 
following equation for the eigenvalues h : 

where the sign of the sum of the perturbations plays a crucial r61e. Note that for 
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FIQURE 5.  Solution trajectories for various initial values close to the origin for strong 
thermal forcing, Ra = 5000, when Pe = 1, 0 = -E and 6 = 4. 

perturbations such that a+p = 0, an immediate adjustment to a state such that 
a+p + 0 takes place since A, + A, when 6 4 1, and only for equal volumes of the 
vessels (6 = 1) does a motion towards the in this case stable critical point take place 
along the antisymmetrical diagonal. Using the same type of argument as in $ 2  it can 
be shown that for the more general case of u+p =!= 0 there are two regimes where 
the critical point is unconditionally nodally stable, namely a+p > 0 & 6 > 1 and 
a+p < 0 & 6 < 1. The boundary case of 6 = 1 is always associated with a stable 
improper node irrespective of the sign of the sum of the perturbations. For the 
remaining cases the situation is more complex. When a+p > 0 and 6 < 1, the critical 
point can be either unstable or stable, depending on whether Ra Pe is larger or smaller 
than (1 + S)/( 1 - 6) respectively, the sign of the discriminant of (4.5) determining 
whether i t  is nodal or spiral in character. The condit,ion for a spiral point is found 
to be 

(1-&)2 (1 + & ) 2  < Rape < -. 
1-6 1-6 (4.6) 

The case a+@ -= 0 and 6 > 1 is similar, and analogous conditions for the character 
of the critical point can be derived. A comparison with the results of $ 2  does not 
appear unreasonable, since in the degenerate case one of the lines of critical points 
was indeed Tf = - Tg, the stability properties of which were determined by the sign 
of the sum of the perturbations. Consequently we note that the existence of thermal 
forcing can exert a stabilizing influence, since the critical point Tf = -Tg = -& 
presently under consideration is unconditionally stable for Ra Pe smaller than a 
critical value dependent upon 6. Furthermore, since this stationary solution for a large 
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enough Ra Pe value also is conditionally (with respect to the sign of the sum of the 
perturbations) unstable, from a practical point of view (stochastic temperature 
perturbations) i t  demonstrates some of the characteristics associated with the onset 
of thermal convection from a stagnant steady state in classical hydromechanics. 

Once the stability characteristics of the critical point have been determined, it is 
possible to discuss the overall behaviour of the solutions, i.e. the manner in which 
the system adjusts from prescribed initial conditions to  either a stationary state or 
a self-sustained oscillation. Since we wish to examine the dependence of the system 
upon the Rayleigh number, the parameter e was varied for y = 9, a choice which 
ensured an e-traverse through both stable and unstable regions. This restriction to 
only one value of y does not represent any serious limitation, since numerical 
investigations have indicated that the qualitative behaviour of the system in the 
phase plane is a generic feature and that the influence of y primarily manifests itself 
in the timescales of the problem. However, in the original parameter space several 
degrees of freedom still remain in that Ra,  Pe, I3 and 6 can assume a multiplicity of 
values for fixed e and y .  The main part of the forthcoming investigations will be 
focused upon Pe = 1 and 6 =a,  which in turn yields I3 = -E for the previously 
assigned value of y. This does represent somewhat of a restriction, but, as will be 
shown, the effects of varying 6 for a fixed value of y limit themselves to quantitative 
changes of the phase-portraits and do not involve any drastic qualitative alterations 
of the solutions. I n  a similar fashion a variation of the PBclet number primarily affects 
the timescales of the problem. Furthermore, by assigning fixed values to  0 and Pe, 
the traverse in the e-direction becomes solely dependent upon the Rayleigh number. 
The eigenvalues determining the stability characteristics of the critical point for these 
parameter values have in figure 4 been graphed as functions of the Rayleigh number. 
As can be seen there are two distinct regions, analytically determined as Ra < 10.125 
and Ra > 81, where the real parts of the eigenvalues are negative, thereby giving rise 
to a stable critical point. In  the next subsection we shall examine the characteristics 
of the transient solutions in these parameter ranges. 

4.1. Qualitative behaviour of the solution in the stable-critical-point regime 

The regimes Ra < 10.125 and Ra > 81 correspond to weak and strong thermal forcing 
of the system respectively. To gain an understanding of the transient solution as it 
progresses towards its stationary state for strong thermal forcing, the Rayleigh 
number is taken to be 5 x lo3. In  this case the eigenvalues of the characteristic 
equation are real and negative, and thus the critical point is a stable nodal point, 
as is also evidenced by the phase portrait shown in figure 5. I n  $3.2, dealing with 
the global behaviour of the solutions in the region far from the origin, the prominence 
of the attracting path in the immediate neighbourhood of the isothermal diagonal 
was noted. The present phase portrait of the region in the vicinity of the origin 
demonstrates that for a large Rayleigh number the importance of this attracting path 
is unchanged, and it will henceforth be referred to as the symmetrical attracting path. 
Furthermore we note that another attracting path comes into play in this region. 
It is orientated along the diagonal TI = - T, and represents a quasihydrostatical state 
of the system, analogous to what was encountered when studying the stationary 
solutions for the degenerate case of thermally insulated vessels in $2, and in what 
follows it will be denoted as the antisymmetrical attracting path. However, an 
important difference between the attracting paths presently under consideration and 
the critical points situated on TI = f T, of $2 is that  the external thermal forcing 
causes a slight shift of the attracting paths from the diagonals proper, a phenomenon 
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to be examined in greater detail when discussing the physical basis for the behaviour 
of the solutions. As is evident from the phase plane of figure 5 ,  there are two general 
routes of approach to the stable critical point. The least devious results in a simple 
motion along the ‘upper’ branch of the symmetrical attracting path until the 
influence of the critical point is felt, whereupon a direct route to the stationary 
solution is taken. A more complicated route ensues when the trajectories have 
coalesced with the ‘lower’ part of the symmetrical attracting path. I n  this case a 
motion towards the origin takes place until the allegiance of the trajectories is 
transferred to the antisymmetrical path, a state which so remains until a drastic jump 
to the ‘upper’ part of the symmetrical path occurs. Thereafter the solutions progress 
in the manner already outlined. 

Since the system under consideration is thermodynamically open and moreover 
lacks thermal diffusion between the vessels, a trajectory coinciding with either 
diagonal is precluded and consequently the attracting paths are situated a small 
distance from the diagonals proper. By examining the passage along the symmetrical 
path, which owing to  0 < 0 takes place somewhat above the diagonal Tl = T,, i t  is 
recognized that the motion is stable since an arbitrary but small temperature 
perturbation of the system is always compensated for by the resulting flow. 
Furthermore, due to the choice of external thermal forcing (0 < 0) and experimental 
configuration (6 < l ) ,  any motion along the symmetrical diagonal must be towards 
the origin. Note that for the antisymmetrical attracting path the interaction between 
the thermal forcing (0 < 0) and the difference in volumes of the two vessels (6 < 1) 
leads to the trajectories being situated somewhat below the diagonal itself. The same 
restoring mechanism as for the symmetrical attracting path causes the motion to be 
stable for temperature perturbations such that the diagonal q = -T, is not 
transgressed. Since the thermodynamics of the system constrain the trajectories to 
move away from the origin in an almost hydrostatically balanced manner, it  is 
recognized that the prescribed condition of 0 > - 1 inevitably leads to a crossing of 
the diagonal (in contrast with the limiting case of 0 = - 1 discussed earlier in this 
section, where the point of external thermal forcing coincided with the conditionally 
semistable critical point situated on the diagonal itself). Once above the diagonal the 
solutions lose stability since the flow between the vessels, which previously tended 
to counteract temperature perturbations, now reinforces them in a manner similar 
to the one outlined in $2. Thereafter an almost adiabatic jump to the symmetrical 
path ensues. A formal investigation of the stability properties of (T,( t ) ,  T , ( t ) )  in the 
course of its trajectory can be achieved by considering the behaviour of perturbations 
superimposed on the solution. Since the perturbations are taken to be small, a 
linearization of the resulting set of governing equations is valid (cf. Lorenz 1963). The 
resulting characteristic equation when c(t) + q ( t )  for the eigenvalues A ,  with in this 
case time-dependent coefficients, is readily found : 

1 + S  Ra - + 7 sgn (Z( t )  - c(t)) (( 1 + 3s) G( t )  + 2( 1 - S) T,( t )  T,( t )  
+ { Pe S 

Since the constant term of this second-degree equation is positive definite, the sign 
of the first-degree coefficient determines the stability properties of (Tl(t), TJt)). A 
numerical test to this effect has been incorporated into the general scheme for 
integration in time and yielded results in accordance with the mechanistic con- 
siderations above. Since the computation were performed with a finite time step, t,he 
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FIGURE 6. Behaviour of solutions for initial values close to the origin for weak thermal forcing, 
Ra = 5, when Pe = 1 ,  0 = -+$ and 6 = 8. 

effect of omitting a proper analysis in the instant of c(t) = G ( t )  proved to be totally 
negligible. 

A stable critical point also occurs for weak thermal forcing, Ra < 10.125. As in the 
case of strong thermal forcing, a number of numerical experiments were conducted, 
but now for Ra = 5, and the results are shown in the phase portrait of figure 6. Since 
the characteristic equation has complex-conjugate roots with negative real parts, the 
critical point should be spiral in character, and this expectation is borne out by the 
figure, which furthermore indicates that the two distinct final routes of the trajectories 
towards the stationary solution are roughly aligned with the diagonal = - T,. A 
not-unreasonable interpretation is that the strength of the previously discussed 
attracting paths has diminished to such an extent that they more or less unnoticeably 
blend into one another. This has the result that, even though the influence of the 
attracting paths is evident from the phase portrait, the trajectories take a much less 
circuitous route towards the stable critical point than was the case for strong thermal 
forcing. Note that also in the present case there occurs a jump of the solutions from 
the antisymmetrical path, but it is non-adiabatic as well as rather weak, since Ra Pe 
is small, and forms an integral part of the’spiralling motion leading towards the critical 
point itself. This alteration of the properties of the attracting paths can be understood 
in terms of the specific balance between advection and thermal forcing which 
determines the position of the paths as well as their stability properties. Since the 
effect of advection increases with the distance from the origin in the (TI, T,)-plane, 
owing to its nonlinear dependence upon the temperatures, there is reason to expect 
the attracting paths to approach the diagonals as or T, increase in magnitude for 
a fixed value of the Rayleigh number, and indeed this is what is observed in figure 
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T2 

- 0.2 

1 - TI 
-0.4 -0.2 

FIGURE 7. Self-sustained periodic solution for Ra = 8.3, Pe = 1, 0 = --E and S = $. The cross 
indicates the position of the critical point, and the arrows show the evolution in time of the system. 

5 .  However, the advective effects can, as is evident from the governing equations, 
also be enhanced by an increased value of Rape and this is precisely what a 
comparison between figures 5 and 6 demonstrates. Thus the vague manner in which 
the attracting paths approach one another and finally coalesce for small values of 
the Rayleigh number may be attributed to the weak thermal forcing. 

4.2. Qualitative behaviour of the solution in the limit-cycle regime 

As already outlined in $3.2, the global stability of the solutions in conjunction with 
an unstable critical point for 10.125 < Ra < 81 leads to the occurrence of limit cycles 
in the phase plane. Numerical investigations have revealed that for the parameter 
values under consideration, namely Pe = 1,  13 = -B and 6 = 8, periodic solutions 
could be found for 8.25 5 Ra 5 107.85. I n  figures 7-9 a selection of the resulting limit 
cycles is shown. (Since the behaviour of the system for Ra < 8.25 has been 
demonstrated in figure 6, the corresponding approach to the stable critical point for 
Ra > 107.85 is for completeness shown in figure 10.) A salient feature of these phase 
portraits is the important r61e that the antisymmetrical attracting path plays. For 
the same reasons that were touched upon in $4.1, a jump from this path also occurs 
here which carries the phase point to the ‘upper’ part of the symmetrical attracting 
path. Owing to the proximity of the origin, the diagonal character of this path is not 
very pronounced, in accordance with the considerations of $4.1, wherein was 
furthermore predicted a weakened degree of coincidence between the attracting paths 
and the diagonals proper for small value of Ra Pe. This latter effect is clearly borne 
out by a comparison between figures 7 and 10. A necessary condition for a closed cycle 
in the phase plane is that  a second jump, caused by a loss of stability of the solution 
on the symmetrical attracting path, takes place back to  the antisymmetrical path. 
This phenomenon is most pronounced in figure 9, but use of the stability criterion 
derived from (4.7) has shown that the much weaker jumps of figures 7 and 8 are also 
associated with a loss of stability of the solutions. 
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I -0.4 -0.2 TI 

FIGURE 8. As figure 7 ,  but for Ra = 35.0. 

m 

I 
TI 0.4 0.2 

FIGURE 9. As figure 7 ,  but for Ra = 107.8. 

This oscillatory behaviour is fundamentally nonlinear in that it is inconceivable 
without a quadratic equation of state, and consequently the system presently under 
consideration does not represent a nonlinear modification of an essentially linear 
oscillator. The limit cycle of figures 7-9 is a relaxation oscillation, which in principle 
is constituted by phases of ‘slow’ motion (along the two attracting paths) inter- 
connected by ‘ fast ’ jumps. Although partly discernible in the phase portraits, these 
features of the oscillation are particularly evident in figure 11, where T,(t) ,  T2 ( t )  and 
z ( t ) - q ( t )  have been graphed versus non-dimensional time in the case of a 

9-2 
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Tz 

FIGURE 10. Trajectory associated with the initial values T’(0) = T!(O) = 0 as it approaches the 
stable critical point for Ra = 107.9, Pe = 1 ,  6 = -E and 6 = i. 

0.4 

-0.2 

-0.41 
FIGURE 1 1 .  T’(t), T,(t) and c(t)-q(t) versus time for Ra = 107.5, Pe = 1, 6 = -E and S = 8. 

self-sustained oscillation for Ra = 107.5. Here the ‘slow’ and ‘fast’ phases of the 
cycle, corresponding to  motion along the attracting paths and the almost-adiabatic 
jumps respectively, are clearly visible as is the associated behaviour of the volume 
flux between the vessels. 

A peculiarity of the system is that, for 8.25 5 Ra < 10.125 and 81 < Ra 5 107.85, 
a stable critical point can coexist with a limit cycle, the initial values determining 
which of these states is ultimately realized. This state of affairs is due to the Hopf 
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I Ra -RaC I * 
FIGURE 12. Diagram illustrating the linear dependence between the radius D of the repelling orbit 
associated with the subcritically unstable regular Hopf bifurcation and IRa - RaCI*, where 
RaC = 10.125 is the critical Rayleigh number. The error bars represent the estimated uncertainty 
in the determination of the radii. 

bifurcations at the lower and upper limits of the region of unstable critical points. 
A formal investigation of the stability properties of the resulting periodic solutions 
has been undertaken (cf. Marsden & McCracken 1976) and yielded the result that the 
closed orbits of the regular and inverse Hopf bifurcations were sub- and supercritically 
unstable respectively, and consequently repelling. This explains the dependence of 
the final state realized upon the initial values, since the unstable closed orbit serves 
as a separatrix delimiting an interior region where all solutions finally approach the 
stable critical point. Even though the orbits resulting from the Hopf bifurcation are 
unstable, it is possible to investigate their characteristics numerically through the 
transformation t --f - t* in the governing equations. An integration along the positive 
half-path in t* time can then be performed, ultimately providing an image of the 
unstable periodic orbit. One of the theoretical predictions (cf. Marsden & McCracken 
1976) concerning their behaviour which has been verified is that, in the immediate 
vicinity of the critical Rayleigh number Rae, the radius of the unstable closed orbit 
is directly proportional to IRa-Racli. This is illustrated in figure 12, which 
demonstrates the growth of the unstable orbit for the subcritical Hopf bifurcation. 
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-0.4 -0.2 

FIGURE 13. Composite phase portrait demonstrating the growth in size of the repelling closed orbits 
(dotted lines) associated with the supercritically unstable inverse Hopf bifurcation for increasing 
values of the Rayleigh number Ra = 100.0, 107.0, 107.73, 107.86 and 107.8625. The solid line shows 
the envelope of the associated stable limit cycles. 

5- 
25 50 I 5  100 I25 

Ra 

FIGURE 14. Periods of the stable limit cycle (solid line) versus the Rayleigh number. Also included 
are the periods of the repelling closed orbits associated with the regular and inverse Hopf 
bifurcations (dotted lines). 



A nonlinear convective system with oscillatory behaviour 257 

2Tl -0.4 -0.2 0.2 

FIGURE 15. Selfsustained oscillation for Ra = 30, Pe = 1, 8 = -: and S = &. 
The cross shows the position of the critical point. 

Analogous computations have been undertaken for the supercritical bifurcation, and 
the repelling orbits for various values of the Rayleigh number are shown in the 
composite phase portrait of figure 13 together with the envelope of the corresponding 
stable limit cycles. The period of the subcritically unstable orbit as i t  emerged proved 
to be T = 3.14, well in accordance with the theoretical prediction T = 2n/lh(RaC)( ,  
as was the value obtained for the supercritically unstable bifurcation, namely 
T = 1.99. In  this context i t  may furthermore be noted that, even though the resulting 
unstable orbits modify the relaxation oscillation somewhat, it  is not the Hopf 
bifurcation which gives rise to the nonlinear oscillatory behaviour of the system. (This 
in marked contrast with such well-known nonlinear oscillations as those associated 
with van der Pol’s triode circuit and Watt’s centrifugal governor, both of which are 
constituted by supercritically stable periodic orbits emerging from regular Hopf 
bifurcations.) 

In  figure 14 the non-dimensional period of the relaxation oscillation has been 
graphed for the entire range of Rayleigh numbers over which self-sustained oscillations 
take place. Due to the dependence of the position of the attracting paths upon the 
degree of thermal forcing, the amplitude of the relaxation oscillation increases for 
large values of the Rayleigh number. Consequently the period of the cycle should also 
increase, since the motion along the attracting paths is essentially controlled by 
thermal diffusion, and this is precisely what is observed. The figure also includes the 
periods of the repelling closed orbits where these occur. An interesting feature of this 
graph is the tendency towards singular behaviour that is demonstrated by the periods 
before coinciding a t  the turning points. This effect is due to the lack of inertia in the 
system, which in thc immediate vicinity of the turning points manifests itself in a 
tendency of the solutions on the symmetrical attracting path to  equilibrate before 
the onset of instability. 

To conclude this subsection it might be noted that the numerical investigations 
reported above have restricted themselves to  the case of S = a. This, however, does 
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FIGURE 16. As figure 15, but  for Ra = 500, Pe = 1, 0 = -% and 6 = A. 

not represent any serious limitation, since for a fixed value of y the changes of the 
phase portrait which a varying volume ratio 6 gives rise to are solely of a quantitative 
nature, as is evident from figures 15 and 16. Here the phase portraits of the 
self-sustained oscillation are shown for Ra = 30, Pe = 1 ,  8 = -! and 6 = & and 
Ra = 500, Pe = 1 ,  8 = -W and 6 = & respectively. (This choice of parameters yields 
identical values of y ,  whereas the almost-equal s-values correspond to strong thermal 
forcing within the oscillatory regime.) The qualitative characteristics of these 
phase portraits can be explained in terms of heat conservation of the fluid during the 
almost adiabatic jump from the antisymmetrical attracting path, why the shape of 
the resulting limit cycles to a large extent is determined by the volume ratio of the 
vessels. 

5.  Summary and discussion 
We have examined the behaviour of stationary and evolutionary solutions to a 

second-order system of nonlinear autonomous ordinary differential equations repre- 
senting convective motion of a fluid with a quadratic equation of state. It has been 
shown that, despite its apparent simplicity, the system can exhibit rather complex 
modes of behaviour. For both weak and strong thermal forcing i t  has one stable 
critical point. The transient adjustment to this stationary solution can, however, be 
rather circuitous due to  the presence of two attracting paths. When the forcing is 
of intermediate strength the critical point loses its stability and the final state takes 
the form of a relaxation oscillation. For certain ranges of thermal forcing the solution 
was found to be nonunique owing to  sub- and supercritically unstable periodic orbits 
emerging from Hopf bifurcations, and thus the final state of the system was 
dependent upon the initial values. This richness in structure of the possible solutions 
is perhaps surprising when one considers the very modest nonlinearity in the equation 
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of state that gives rise to it,  but, lest any doubts should linger about the qualitative 
influence of a quadratic density law, they should be dispelled by considering the 
results of applying a linear equation of state to the problem. All solutions would in 
this case adjust themselves to a steady state and no self-sustained oscillation could 
occur. 

Even though the governing equations locally for the abovementioned Hopf 
bifurcations are analytical, this does not hold true globally for the relaxation 
oscillation, where instead the non-analytical character of (3.3 a ,  b) plays a decisive r6le 
in maintaining the limit cycle. Consequently i t  appears very unlikely that the present 
results could be generalized to a continuous system, since the nonanalytical advection 
terms in the governing equations are due to the imposed spatial homogeneity of the 
fluid within each of the vessels. Nevertheless, the model investigated here is of interest 
in its own right and can furthermore serve as a substructure for potentially interesting 
extensions of the system. Thus a Newtonian heat flux between the vessels can be 
specified without violating the basic tenet that no spatial dependence within the 
system be permitted. Further investigations which are being pursued concern the 
effects of a slackening of the restriction that the conductive properties of the vessels 
be the same, a restraint originally introduced so as to make feasible an analytical 
treatment of the problem. Another extension which is being considered is that of 
including the effects of inertia on the flow. This, however, complicates the situation 
by yielding a third-order problem, since in this case the equation governing the flow 
between the vessels will include an acceleration term. 

A tacit assumption of all considerations underlying the present theoretical 
investigation is that the system be experimentally realizable and indeed laboratory 
work is in progress with the aim of substantiating the qualitative predictions of this 
paper. 
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